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Introduction
In the pricing of options two things are important: speed and accuracy.
Unfortunately, these two do not go hand in hand. Simple models like the
Black-Scholes model provide a solution fast, but are not very accurate. More
complicated models like the lifted Heston model [1] are accurate but compu-
tation can take quite long. Using neural networks is a promising method to
compute the option price fast in complicated models.

One way of pricing an option is to write its value as the solution to a
partial differential equation (PDE) with the Feynman-Kac formula:
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In this research we will solve this general PDE using a neural network.

Method
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To apply the Time Deep Nitsche Method [3], we rewrite PDE (1) by splitting
the operator into two parts: a symmetric part and an asymmetric part:
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= −∇ · (A∇u) + ru + F (u),
F (u) = b · ∇u.

We then divide [0, T ] in intervals (τk−1, τk] with h = τk − τk−1 and seek
approximations fk(θ; x) such that
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Algorithm 1 Time Deep Nitsche Method
1: Initialize network parameters θ0

0.
2: Initialize a neural network approximating the initial condition

f 0 = min
w∈H1(Ω)

‖w − Φ(X)‖L2(Ω).

3: for each time step k = 1, ..., Nt do
4: Initialize θk

0 = θk−1.
5: for each sampling stage do
6: Generate random points xi for training.
7: Calculate the cost functional L(θk

n; xi) for the sampled points.
8: Take a descent step θk

n+1 = θk
n − αn∇θL(θk

n; xi).
9: end for

10: end for

Results
We compare the prices computed by the neural networks with deriving the
characteristic function and from that computing the option price using the
COS method [2].

Figure 1: European call option prices in the lifted Heston model with 21 dimensions against
the moneyness for four different times to maturity.

Model BS Heston LH, n=1 LH, n=5 LH, n=20
DGM 3.4 × 103 6.3 × 103 2.0 ×104 4.4 × 104 1.6 × 105

TDNM 5.5 × 103 7.0 × 103 7.6 ×103 1.2 × 104 1.9 × 104

Table 1: Training time in seconds of the different methods for a European call option in
different models.

Model BS Heston LH, n=1 LH, n=5 LH, n=20
COS 5.0 × 10−4 1.3 × 10−2 5.7 × 10−0 6.2 × 10−0 6.4 × 10−0

DGM 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2

TDNM 2.7 × 10−2 3.6 × 10−2 5.3 × 10−2 5.2 × 10−2 4.5 × 10−2

Table 2: Computing time in seconds of the different methods for a European call option in
different models.
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