
Deep Gradient Flow Methods for Option Pricing in Diffusion
Models

Jasper Rou,†∗ Antonis Papapantoleon,† Emmannuil Georgoulis‡§

∗j.g.rou@tudelft.nl, †Delft Institute of Applied Mathematics, TU Delft, ‡Department of Mathematics, Heriot-Watt University,
§Department of Mathematics, National Technical University of Athens

Introduction
In the pricing of options two things are important: speed and accuracy.
Unfortunately, these two do not go hand in hand. Simple models like the
Black-Scholes model provide a solution fast, but are not very accurate. More
complicated models like the lifted Heston model [1] are accurate but compu-
tation can take quite long. Using neural networks is a promising method to
compute the option price fast in complicated models.

One way of pricing an option is to write its value as the solution to a
partial differential equation (PDE) with the Feynman-Kac formula:

∂u

∂t
+

n∑
i,j=0

aij ∂2u

∂xi∂xj
−

n∑
i=0

bi ∂u

∂xi
− ru = 0,

u(T ) = Φ(ST )
(1)

In this research we will solve this general PDE using a neural network.

Method
The Deep Galerkin Method [4] is to minimize∥∥∥∥∥∥∂u

∂t
+

n∑
i,j=0

aij ∂2u

∂xi∂xj
−

n∑
i=0

bi ∂u

∂xi
− ru

∥∥∥∥∥∥
2

[0,T ]×Ω

+ ‖u(T ) − Φ(ST )‖2
Ω .

To apply the Time Deep Nitsche Method [3], we rewrite PDE (1) by splitting
the operator into two parts: a symmetric part and an asymmetric part:

∂u

∂t
= −

n∑
i,j=0

∂

∂xj

(
aij ∂u

∂xi

)
+

n∑
i=0

bi +
n∑

j=0

∂aij

∂xj

 ∂u

∂xi
+ ru.

= −∇ · (A∇u) + ru + F (u),
F (u) = b · ∇u.

We then divide [0, T ] in intervals (τk−1, τk] with h = τk − τk−1 and seek
approximations fk(θ; x) such that

fk − fk−1

h
− ∇ ·

(
A∇fk

)
+ rf k + F

(
fk−1) = 0.

This is equivalent to finding the minimizer of

L = 1
2

∥∥w − fk−1∥∥2
L2(Ω) + h

∫
Ω

1
2

(
(∇w)T A∇w + rw2

)
+ F

(
fk−1) wdx.

Algorithm 1 Time Deep Nitsche Method
1: Initialize network parameters θ0

0.
2: Initialize a neural network approximating the initial condition

f 0 = min
w∈H1(Ω)

‖w − Φ(X)‖L2(Ω).

3: for each time step k = 1, ..., Nt do
4: Initialize θk

0 = θk−1.
5: for each sampling stage do
6: Generate random points xi for training.
7: Calculate the cost functional L(θk

n; xi) for the sampled points.
8: Take a descent step θk

n+1 = θk
n − αn∇θL(θk

n; xi).
9: end for

10: end for

Results
We compare the prices computed by the neural networks with deriving the
characteristic function and from that computing the option price using the
COS method [2].

Figure 1: European call option prices in the lifted Heston model with 21 dimensions against
the moneyness for four different times to maturity.

Model BS Heston LH, n=1 LH, n=5 LH, n=20
DGM 3.4 × 103 6.3 × 103 2.0 ×104 4.4 × 104 1.6 × 105

TDNM 5.5 × 103 7.0 × 103 7.6 ×103 1.2 × 104 1.9 × 104

Table 1: Training time in seconds of the different methods for a European call option in
different models.

Model BS Heston LH, n=1 LH, n=5 LH, n=20
COS 5.0 × 10−4 1.3 × 10−2 5.7 × 10−0 6.2 × 10−0 6.4 × 10−0

DGM 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2

TDNM 2.7 × 10−2 3.6 × 10−2 5.3 × 10−2 5.2 × 10−2 4.5 × 10−2

Table 2: Computing time in seconds of the different methods for a European call option in
different models.

References
[1] Eduardo Abi Jaber. “Lifting the Heston model”. In: Quantitative Finance

19.12 (2019), pp. 1995–2013.
[2] Fang Fang and Cornelis W. Oosterlee. “A novel pricing method for Eu-

ropean options based on Fourier-cosine series expansions”. In: SIAM
Journal on Scientific Computing 31.2 (2009), pp. 826–848.

[3] Emmanuil H Georgoulis, Michail Loulakis, and Asterios Tsiourvas. “Dis-
crete gradient flow approximations of high dimensional evolution partial
differential equations via deep neural networks”. In: Communications in
Nonlinear Science and Numerical Simulation 117 (2023), p. 106893.

[4] Justin Sirignano and Konstantinos Spiliopoulos. “DGM: A deep learn-
ing algorithm for solving partial differential equations”. In: Journal of
computational physics 375 (2018), pp. 1339–1364.

Delft Institute of Applied Mathematics

mailto:j.g.rou@tudelft.nl

