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Introduction

In the pricing of options two things are important: speed and accuracy.
Unfortunately, these two do not go hand in hand. Simple models like the
Black-Scholes model provide a solution fast, but are not very accurate. More
complicated models like the lifted Heston model [1] are accurate but compu-
tation can take quite long. Using neural networks is a promising method to
compute the option price fast in complicated models.

One way of pricing an option is to write its value as the solution to a
partial differential equation (PDE) with the Feynman-Kac formula:
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In this research we will solve this general PDE using a neural network.

Method

The Deep Galerkin Method [4] is to minimize
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To apply the Time Deep Nitsche Method [3], we rewrite PDE (1) by splitting
the operator into two parts: a symmetric part and an asymmetric part:
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We then divide |0,T] in intervals (7,_1,7;| with h = 7 — 71 and seek
approximations f*(0;x) such that
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This is equivalent to finding the minimizer of
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Algorithm 1 Time Deep Nitsche Method

1: Initialize network parameters 6.
2: Initialize a neural network approximating the initial condition
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3. for each timestep £k =1,..., N; do

4 Initialize 0 = 0% 1.

5 for each sampling stage do

6: Generate random points x' for training.
7 Calculate the cost functional L(6”:x") for the sampled points.
8 Take a descent step 0F,, = 0F — ,, VL (0% x").
9. end for

10 end for
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Results

We compare the prices computed by the neural networks with deriving the
characteristic function and from that computing the option price using the

COS method [2].
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Figure 1: European call option prices in the lifted Heston model with 21 dimensions against
the moneyness for four different times to maturity.

Model BS' Heston LH, n=1 LH, n=5/LH, n=20
DGM 3.4 x 10°6.3 x 10°/2.0 x10* 4.4 x 10* 1.6 x 10°
TDNM 5.5 x 10° 7.0 x 10°/7.6 x10° 1.2 x 10* 1.9 x 10*

Table 1: Training time in seconds of the different methods for a European call option in
different models.

Model BS Heston LH, n=1 LH, n=5 LH, n=20
COS 50x107*1.3x10257x107Y6.2x 107" 6.4 x 107V
DGM 1.1 x1072/1.1 x10721.1 x 1072 1.1 x 1072 1.1 x 1072
TDNM 2.7 x 10723.6 x 1072 5.3 x 107252 x 1072 4.5 x 1072

Table 2: Computing time in seconds of the different methods for a European call option in
different models.
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