Deep Gradient Flow Methods for Option Pricing in Diffusion Models

Jasper Rou^{†*} Antonis Papapantoleon[†] Emmannuil Georgoulis^{‡§}

*j.g.rou@tudelft.nl, [†]Delft Institute of Applied Mathematics, TU Delft, [‡]Department of Mathematics, Heriot-Watt University, [§]Department of Mathematics, National Technical University of Athens

Introduction

In the pricing of options two things are important: speed and accuracy. Unfortunately, these two do not go hand in hand. Simple models like the Black-Scholes model provide a solution fast, but are not very accurate. More complicated models like the lifted Heston model [1] are accurate but computation can take quite long. Using neural networks is a promising method to compute the option price fast in complicated models.

Results

We compare the prices computed by the neural networks with deriving the characteristic function and from that computing the option price using the COS method [2].

One way of pricing an option is to write its value as the solution to a partial differential equation (PDE) with the Feynman-Kac formula:

$$\frac{\partial u}{\partial t} + \sum_{i,j=0}^{n} a^{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} - \sum_{i=0}^{n} b^i \frac{\partial u}{\partial x_i} - ru = 0, \qquad (1)$$
$$u(T) = \Phi(S_T)$$

In this research we will solve this general PDE using a neural network.

Method

The Deep Galerkin Method [4] is to minimize

$$\left\| \frac{\partial u}{\partial t} + \sum_{i,j=0}^{n} a^{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} - \sum_{i=0}^{n} b^i \frac{\partial u}{\partial x_i} - ru \right\|_{[0,T] \times \Omega}^2 + \|u(T) - \Phi(S_T)\|_{\Omega}^2.$$

To apply the Time Deep Nitsche Method [3], we rewrite PDE (1) by splitting the operator into two parts: a symmetric part and an asymmetric part:

Figure 1: European call option prices in the lifted Heston model with 21 dimensions against the moneyness for four different times to maturity.

$$\begin{split} \frac{\partial u}{\partial t} &= -\sum_{i,j=0}^{n} \frac{\partial}{\partial x_{j}} \left(a^{ij} \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=0}^{n} \left(b^{i} + \sum_{j=0}^{n} \frac{\partial a^{ij}}{\partial x_{j}} \right) \frac{\partial u}{\partial x_{i}} + ru. \\ &= -\nabla \cdot (A \nabla u) + ru + F(u), \\ F(u) &= \mathbf{b} \cdot \nabla u. \end{split}$$

We then divide [0,T] in intervals $(\tau_{k-1},\tau_k]$ with $h = \tau_k - \tau_{k-1}$ and seek approximations $f^k(\theta; \mathbf{x})$ such that

$$\frac{f^k - f^{k-1}}{h} - \nabla \cdot \left(A\nabla f^k\right) + rf^k + F\left(f^{k-1}\right) = 0.$$

This is equivalent to finding the minimizer of

$$L = \frac{1}{2} \left\| w - f^{k-1} \right\|_{L^{2}(\Omega)}^{2} + h \int_{\Omega} \frac{1}{2} \left((\nabla w)^{T} A \nabla w + rw^{2} \right) + F \left(f^{k-1} \right) w dx.$$

Algorithm 1 Time Deep Nitsche Method

- 1: Initialize network parameters θ_0^0 .
- 2: Initialize a neural network approximating the initial condition

Model	BS	Heston	LH, $n=1$	LH, n=5	LH, n=20
DGM	3.4×10^3	6.3×10^{3}	2.0 $\times 10^4$	4.4×10^{4}	1.6×10^{5}
TDNM	5.5×10^3	7.0×10^3	7.6 $\times 10^3$	1.2×10^{4}	1.9×10^{4}

Table 1: Training time in seconds of the different methods for a European call option in different models.

Model	BS	Heston	LH, n $=1$	LH, n=5	LH, n=20
COS	5.0×10^{-4}	1.3×10^{-2}	5.7×10^{-0}	6.2×10^{-0}	6.4×10^{-0}
DGM	1.1×10^{-2}				
TDNM	2.7×10^{-2}	3.6×10^{-2}	5.3×10^{-2}	5.2×10^{-2}	4.5×10^{-2}

Table 2: Computing time in seconds of the different methods for a European call option in different models.

References

Eduardo Abi Jaber. "Lifting the Heston model". In: *Quantitative Finance* |1| 19.12 (2019), pp. 1995–2013. Fang Fang and Cornelis W. Oosterlee. "A novel pricing method for Eu-|2| ropean options based on Fourier-cosine series expansions". In: SIAM Journal on Scientific Computing 31.2 (2009), pp. 826–848. Emmanuil H Georgoulis, Michail Loulakis, and Asterios Tsiourvas. "Dis-|3| crete gradient flow approximations of high dimensional evolution partial differential equations via deep neural networks". In: Communications in Nonlinear Science and Numerical Simulation 117 (2023), p. 106893. Justin Sirignano and Konstantinos Spiliopoulos. "DGM: A deep learn-[4] ing algorithm for solving partial differential equations". In: Journal of computational physics 375 (2018), pp. 1339–1364.

$$f^0 = \min_{w \in H^1(\Omega)} \|w - \Phi(\mathbf{X})\|_{L_2(\Omega)}.$$

- 3: for each time step $k = 1, ..., N_t$ do
- 4: Initialize $\theta_0^k = \theta^{k-1}$.
- 5: **for** each sampling stage **do**
- 6: Generate random points \mathbf{x}^i for training.
- 7: Calculate the cost functional $L(\theta_n^k; \mathbf{x}^i)$ for the sampled points.
- 8: Take a descent step $\theta_{n+1}^k = \theta_n^k \alpha_n \nabla_{\theta} L(\theta_n^k; \mathbf{x}^i).$
- 9: **end for**
- 10: **end for**

