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Introduction

Neural networks are becoming increasingly popular in finance. However, good
theoretical results are often lacking. In this research we prove convergence of

the time deep gradient flow method, a neural network method which shows
good numerical performance in solving partial differential equations (PDEs).

The price of an option can be written as the solution to the PDE:

ou Z Z | B
Ot Z ]6’%8% Zbaxz Sru =0

1,7=0 1=0

We split the PDE into a symmetric and an asymmetric part:
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Time Deep Gradient Flow

First, we discretize the PDE in time. Divide [0, T| in intervals (t_1, t;| with
h =t — t;_; and seek approximations U” such that
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Theorem 1: Akrivis and Crouzeix 2004
There exists a constant C' independent of /4 and £ such that

— U"|| < Ch.

max Hu tk
0<k<N

Second, we rewrite the solution of the discretized PDE as the minimizer
of the functional
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The minimizer w, € H; (Rd) of I" is the unique solution U*.

Define

" (1) = I (w, + T) .
Since w, minimizes I*, 7 = 0 minimizes i*. So using integration by parts,
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U +h(=V - (AVw,) + rw. + F (U*))) vdz.

Let w,, be a sequence in H (Rd) and w, the minimizer of I*.

lim 1" (w,,) = I" (w,) .

lim ||w,, — i
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Third, we approximate this minimizer by a neural network.

Definition 1: Activation function
An activation function is a function 1) : R? — R such that ¢ € C° (Rd)

and [, (z)dx # 0.
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Definition 2: Neural network
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let - 5 < 0 < 1. The space of neural networks with one layer and N neurons

Denote the parameters of the neural network by " =
IS
V(0% x) =

VN (0, x) = 525¢ (a'z + ')

C(y) = UNZCN (1) is dense in H; (R?).

Training

We train the network using gradient descent with learning rate ny:
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We can prove that as the number of neurons goes to infinity, the neural
network converges to the following gradient flow:

dvét(x) = —(DI*(V}), Z (x, -)>H5,
Z (x,y) =E [VsaB0% (g +¢5) - VBt (agy + )] -
For any 1" > 0,
[V = Vil | =0
sup | g | —

Furthermore, we can prove that as the training time goes to infinity, this
gradient flow converges to the minimizer of the functional.

Theorem 06:

tliglo Vi — w*HHg = 0.

Proof .
We define the operator T by
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Then T is a self-adjoint, positive definite trace class operator. So we can
apply a spectral decomposition:
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with Ay > Xy > ... > 0 and an orthogonal basis {¢;}°,
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= — \hi.
hi = e~ MRhi. By Parseval's identity we conclude
[Vi—will =30 ()" = D0 (1) =S 0
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